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Abstract

Background

This project investigates the potential of convolutional neural networks (CNN) to iden-

tify cardiogenic pulmonary edema (CPE) from chest radiographs and NT-proBNP biomarker

measurements. Building upon the methods used by Huynh in “Deep Learning Radiographic

Assessment of Pulmonary Edema,” our project aimed to expand upon his findings by modifying

CNN architectures to intake additional parameters [1]. Specifically, we evaluated the impact

of including (1) clinical data and (2) heart and lung image segmentation on CNN model per-

formance: we hypothesized that incorporating these features would improve the ability of the

CNN classifier to identify CPE.

Methods

Chest radiographs and clinical data obtained from 16,619 UC San Diego Health patients

were randomly split into train, validation, and test sets at a ratio of 80%/10%/10%. We trained

four modified ResNet152 CNN architectures with differing inputs: (A) Original Radiographs

only, (B) Original Radiographs + Clinical Data, (C) Original Radiographs + Heart & Lung

Segmentations, and (D) Original Radiographs + Heart & Lung Segmentations + Clinical Data.

Early stopping was implemented to save the models with the minimum loss on the validation

set (n = 1,662). The four model’s accuracy and AUC on the test set (n = 1,662) were used to

compare model performance.

Results

Model (B) had the highest accuracy (0.787) and AUC (0.869). Model (D) performed

marginally worse than Model (B), with accuracy and AUC of 0.783 and 0.866, respectively.

Models (A) and (B) performed considerably worse than both Models (B) and (D).

Conclusions

This project emphasizes the need to consider confounding factors, clinical data, and image

segmentation when training CNN models for medical imaging classification tasks. While an
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increase in CNN model performance was observed from adding clinical data, a performance

increase was not observed in the models that included heart and lung segmentations. Further

research is needed to determine the optimal use of image segmentations in CNN models.

1 Introduction

Pulmonary edema is a serious and potentially life-threatening condition with increased extravascular

lung water [2]. The condition is most commonly caused by two major conditions: cardiogenic and

noncardiogenic. Cardiogenic pulmonary edema (CPE) typically results from acute decompensated

heart failure due to increased filling pressures in the heart’s left chambers, causing pressure backflow

to the lung vasculature [3]. Noncardiogenic pulmonary edema is caused by increased permeability

of the lung capillaries resulting from injury, infection, or trauma.

NT-proBNP is a natriuretic hormone released primarily from the heart in response to increased

chamber size due to increased filling pressures. Elevated levels of NT-proBNP can be used to

determine if findings of pulmonary edema from chest radiographs are due to cardiogenic versus

noncardiogenic causes [4].

However, NT-proBNP levels are influenced by confounding factors such as renal failure, age, sex,

and BMI [5]. First, patients in renal failure tend to have higher concentrations of NT-proBNP due to

increased intravascular volume [6]. As such, we incorporated laboratory measurements of Creatinine,

which is the most widely used biomarker for measuring kidney function [7]. Second, patients with

obesity tend to have lower concentrations of NT-proBNP compared to non-obese patients. However,

it is not known whether this disparity is due to obesity or other confounding variables including age,

sex, and heart failure severity [5]. For this project, we included BMI measurements for each patient

so the CNN model could account for this confounding variable.

The typical chest radiograph findings of pulmonary edema range from mild to severe, including

redistribution of pulmonary blood vessels, cardiomegaly, Kerley B-lines, peribronchial cuffing, con-

solidations, air bronchograms, and pleural effusions. These are the primary identifiers for examining

chest radiographs to diagnose CPE.

CNNs have been effective in classifying diseases from medical images. However, the consistency

and accuracy of manually labeled medical image datasets is an area of concern. In addition, highly

accurate and generalizable CNNs for diagnosing diseases from medical images have a strong appli-

cation, particularly in Low- and Middle-Income Countries (LMIC) where there may not be enough

radiologists. To address these points, Huynh proposed the method of training CNNs to predict

NT-proBNP concentrations; this biomarker provides a continuous and objective measure used for

diagnosing CPE.

2 Literature Review and Prior Work

Huynh’s study included 26,667 radiographs with a corresponding NT-proBNP value and 1,423 ra-

diographs with a BNP value. These BNP values are blood serum biomarkers indicative of acute

heart failure and cardiogenic pulmonary edema. The datasets were partitioned into 80% train,
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10% validation, and 10% test sets, and the distribution of NT-proBNP and BNP values remained

relatively constant across the sets. Based on scientific literature, the threshold for diagnosing car-

diogenic pulmonary edema is NT-proBNP ≥ 400pg/mL [4]. The ResNet152v2 model trained on a

two-stage training process of transfer learning. The first stage was used to infer NT-proBNP values,

while the second layer used ResNet152v2 to infer BNP values. This model architecture was trained,

and performance was measured across different image resolutions. The correlation between the true

and predicted values peaked as smaller image sizes for both BNP and NT-proBNP. However, the

AUC scores increased to 1024x1024, indicating greater CNN performance. Additionally, the study

found that BNP predictions had stronger correlations to the measured BNP values than NT-proBNP

predictions to the measured NT-proBNP values.

The scientific paper ”Lung Field Segmentation in Chest Radiographs: a Historical Review, Cur-

rent Status, and Expectations from Deep Learning” by Sanjeev Sofat et al. explored a modified

U-Net architecture for biomedical image segmentation. The model was designed to effectively seg-

ment the lung field, clavicles, and heart using 18 convolutional layers. Although this model did not

perform as well as an existing InvertedNet architecture, the researchers pointed out the shift from

feature engineering to improving architecture engineering.

One of the primary challenges the researchers face is the limited availability of annotated medical

data for training. To address this issue, they have looked to transfer learning and are also attempting

to crowdsource large medical datasets with the assistance of radiologists. Despite the challenges,

the researchers remain optimistic about the potential of deep learning techniques in medical image

segmentation and hope to improve the accuracy and efficiency of these models.

In the paper Comparing different deep learning architectures for classification of chest radiographs

by Keno Bressem et. al., the researchers used 15 CNNs of five architectures: ResNet, DenseNet,

VGG, SqueezeNet, Inception v4, and AlexNet. This project was conducted in a similar domain as

our project, although the scope was broadened to include other diseases like cardiomegaly, atelec-

tasis, and pleural effusion. They hypothesized that deeper CNNs do not necessarily have better

performance than shallower networks. They noted that with the increased complexity of a CNN,

the higher the number of resources required to train a model. To account for larger images, we can

reduce batch sizes to avoid memory errors. They concluded that AlexNet, ResNet34, and VGG16,

which are shallower CNNs, gave an accurate classification of radiographs. These results are insight-

ful since it shows that with networks with fewer layers, we may have more hyperparameter tuning

and a faster training process, while being able to efficiently handle larger images.

3 Data Description

We constructed a dataset of 16,619 records from UCSD Health patients. The NT-proBNP column

represents the NT-proBNP value, a continuously valued biomarker measured from blood serum

samples. The NT-proBNP values are bottom and top coded as their minimum possible value is

0 pg/mL, and the maximum is 70,000 pg/mL. As shown in Figure 1, there is a strong right skew

for NT-proBNP values. Due to this, we followed Huynh’s study and performed a log (base 10)

transformation to create the log10 NTproBNP column. The histogram for log10 NT-proBNP in
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Figure 1 shows that the distribution is approximately normal due to the log transformation. Using

the threshold for pulmonary edema consistent with academic literature, we classified patients with an

NT-proBNP value of at least 400 pg/mL as positive for cardiogenic pulmonary edema and patients

under the threshold as normal cases. Similarly, on the logarithmic scale, any records with a log10

NT-proBNP value of at least 2.602 are considered positive for cardiogenic pulmonary edema. These

binary cases were encoded in the ‘cardiogenic edema’ column. Around 64.7% of the records in our

dataset had cardiogenic pulmonary edema based on this threshold.

The ‘bmi’ column contains the patient’s body mass index (kg/m2), derived from a patient’s

mass and height. The ‘creatinine’ column contains a continuous Creatinine concentration (mg/dL)

measured from blood serum samples. The normal range for adult males is 0.7 to 1.3 mg/dL and

0.6 to 1.1 mg/dL for adult females [8]. The ‘pneumonia’ and ‘acute heart failure’ columns indicate

the presence or absence of these physician clinical findings. In the dataset, 12.0% of patients have

pneumonia, and 17.2% have acute heart failure. The dataset initially provided by the UCSD Artificial

Intelligence and Data Analytics (AIDA) Lab had 18,900 deidentified records.

(a) NT-proBNP (b) log10 NT-proBNP

(c) BMI (d) Creatinine

Figure 1: Distributions of Quantitative Labels
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4 Methods

4.1 Clinical Data

To ensure high-quality data for our project, we excluded patients with missing values for columns

containing clinical data, specifically Creatinine, BMI, Acute Heart Failure, and Pneumonia. This

exclusion was performed on the initial dataset of 18,900 patient records, resulting in 2,281 patients

being removed from the final dataset used for model training, validation, and testing. The remaining

dataset contained 16,619 patients. The potential mechanisms of missingness were not evaluated for

the excluded patients.

4.2 Lung & Heart Image Segmentation

The UC San Diego AIDA laboratory provided a pre-trained U-Net CNN, which we used to create

predicted binary masks of the right and left lungs, heart, right and left clavicle, and spinal column

for each patient’s chest radiograph. These masks were generated by applying the pre-trained model

to the full dataset of patient chest radiographs. We then used the binary masks to create a new

image of only the heart and another with only the lungs (Figure 2).

Figure 2: Heart and Lung Segmentation Diagram

4.3 ResNet152 Architectures

We used the default PyTorch ResNet152 model, with only one (regression) output class instead of ten

(classification), to train four models. Model A took only the original radiographs as inputs. Model
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B incorporated the clinical data by modifying the forward method of the model to concatenate the

clinical data with the output from the convolutional layers. Model C took in the original radiographs,

lung segmentations, and heart segmentations (three image channels) as inputs, passing each through

the model’s convolutional layers. Model D took in the original radiographs, lung segmentations, and

heart segmentations (three image channels), and the clinical data as inputs. The forward method

of the model was modified to concatenate the clinical data with the output from the convolutional

layers (Figure 3).

4.4 Model Training/Validation

All four models were trained on the training set with a batch size of 12 for 20 epochs using the

NAdam optimizer with a learning rate of 0.001 [hyperparameters: betas=(0.9, 0.999), eps=1e-08,

weight decay=0], and the mean absolute error (MAE) loss function. The MAE on the validation

set was computed after each epoch, and early stopping was implemented such that the model with

the minimum MAE on the validation set was saved. The overall purpose of the validation set was

to optimize the model’s parameters during training. (Figure 7)

4.5 Model Testing

After 20 epochs, the MAE on the unseen test set was computed for the four models with the

minimum MAE on the validation set. We also saved each patient’s predicted log10(NT-proBNP)

values in the test set. We plotted these predictions against the laboratory-measured values for

log10(NT-proBNP) and calculated the Pearson correlation coefficient (r). We used the threshold

for cardiogenic pulmonary edema diagnosis (log10(400 pg/mL) = 2.602) to binarize each model’s

predicted values of log10(NT-proBNP) and calculated accuracy and AUC using the test set. We

created confusion matrices and AUC-ROC curves for all four models and used these metrics to

compare performance (Figures 4 and 5). The unseen test set aimed to provide an unbiased estimate

of model performance after training.

5 Results

Table 1 includes all four ResNet152 model performances by input data, including their respective

Train L1-Loss, Test L1-Loss, Accuracy, AUC, and Pearson R scores. This table highlights that

Model (B) performed the best with an accuracy of 0.787 and AUC of 0.869.

Figure 4 displays the ROC curves of each ResNet152 model with different model inputs. Model

(B) achieved the highest AUC score of 0.869 compared to Model A (AUC: 0.824), Model C (AUC:

0.828) and Model D (AUC: 0.866). Figure 5 presents the four outcomes to visualize the performance

rates for each model. As previously mentioned, the matrices showcase that Model (B) outperformed

all other models.

The performance of the models can also be seen in the Pearson correlation scatterplots, as shown

in Figure 6. The red lines with the equation y=x represent a perfect regression model in which the

predicted values perfectly align with the observed values. The scatterplots show that Models (B)
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Table 1: ResNet152 Model Performance by Inputs

and (D) follow the red line most closely. The correlation coefficients for these two models are similar

(r = 0.739 and r = 0.738, respectively), thus showing that they outperform the models that do not

include Clinical Data.

6 Discussion

From the above results, it was apparent that a more complex and preprocessed input including

segmentations did not appear to improve the ability of the classifier to identify cases of pulmonary

edema. We hypothesized that image segmentation of X-rays would help focus the neural network

on the lungs and heart regions, where cardiogenic pulmonary edema is most identifiable from ra-

diographs. We proposed that by reducing noise in the input, the classifier could better distinguish

cardiogenic pulmonary edema and normal cases. However, heart and lung segmentation did not

improve performance, which is likely because the neural network was able to learn the necessary

features from the original X-rays. Providing segmented images is not necessarily adding information

to the ResNet152 model, but is instead cropping information out when it is passed to the network.

Another reason we believe segmentation was not as beneficial as we had hypothesized is due to

the dataset size. By training on around 13,000 images, the neural network will most likely have

sufficient data to distinguish normal and edema cases and determine that these differences lie in the

heart and lung regions. If there were a smaller set of training images. In that case, segmentation

might yield a better classifier due to the more focused input provided and the possible lack of the
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neural network’s ability to have enough data to focus on the heart and lungs.

Our results reinforce our hypothesis that the addition of confounding factors as features improves

the performance of a classifier. This suggests that when creating a classifier, it is crucial to under-

stand the features that truly correlate with the target feature. In this case, the clinical labels have

shown that they have a high impact on the presence of CPE.

We were also able to create a model that performed better than the model in Huynh’s paper

trained on 256x256 images. The AUC obtained by the model in the paper was roughly 0.85, whereas

our highest-performing model had an AUC of 0.869.
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(a) Model A Architecture

(b) Model B Architecture

(c) Model C Architecture

(d) Model D Architecture

Figure 3: ResNet152 Architectures
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Figure 4: ROC Curves for each ResNet152 model by Input Data
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(a) Model A (b) Model B

(c) Model C (d) Model D

Figure 5: Confusion matrices for each model

11



(a) Model A (b) Model B

(c) Model C (d) Model D

Figure 6: Scatterplots of Measured (x-axis) vs. Predicted (y-axis) values for log10(NT-proBNP)
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(a) Model A (b) Model B

(c) Model C (d) Model D

Figure 7: Train and Validation L1 Loss Curves for each model
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